Smoothed Empirical Likelihood Methods for Quantile Regression Models

نویسندگان

  • Yoon-Jae Whang
  • Yuichi Kitamura
  • Oliver Linton
چکیده

This paper considers an empirical likelihood method to estimate the parameters of the quantile regression (QR) models and to construct confidence regions that are accurate in finite samples. To achieve the higher-order refinements, we smooth the estimating equations for the empirical likelihood. We show that the smoothed empirical likelihood (SEL) estimator is first-order asymptotically equivalent to the standard QR estimator and establish that confidence regions based on the smoothed empirical likelihood ratio have coverage errors of order n−1 and may be Bartlett-corrected to produce regions with an error of order n−2, where n denotes the sample size. We further extend these results to censored quantile regression models. Our results are extensions of the previous results of Chen and Hall (1993) to the regression contexts. Monte Carlo experiments suggest that the smoothed empirical likelihood confidence regions may be more accurate in small samples than the confidence regions that can be constructed from the smoothed bootstrap method recently suggested by Horowitz (1998).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Empirical Evidence from Greece

The main idea of this paper is to study the dependence between the probability of default and the recovery rate on credit portfolio and to seek empirically this relationship. We examine the dependence between PD and RR by theoretical approach. For the empirically methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression. These methods allow to determinate...

متن کامل

Empirical Likelihood for Nonparametric Additive Models

Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...

متن کامل

Spatiotemporal quantile regression for detecting distributional changes in environmental processes.

Climate change may lead to changes in several aspects of the distribution of climate variables, including changes in the mean, increased variability, and severity of extreme events. In this paper, we propose using spatiotemporal quantile regression as a flexible and interpretable method for simultaneously detecting changes in several features of the distribution of climate variables. The spatio...

متن کامل

Gradient descent algorithms for quantile regression with smooth approximation

Gradient based optimization methods often converge quickly to a local optimum. However, the check loss function used by quantile regression model is not everywhere differentiable, which prevents the gradient based optimization methods from being applicable. As such, this paper introduces a smooth function to approximate the check loss function so that the gradient based optimization methods cou...

متن کامل

Bayesian Quantile Regression Methods∗

This paper is a study of the application of Bayesian Exponentially Tilted Empirical Likelihood to inference about quantile regressions. In the case of simple quantiles we show the exact form for the likelihood implied by this method and compare it with the Bayesian bootstrap and with Jeffreys’ method. For regression quantiles we derive the asymptotic form of the posterior density. We also exami...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004